Combinatorial Proofs of Addition Formulas
نویسندگان
چکیده
In this paper we give a combinatorial proof of an addition formula for weighted partial Motzkin paths. The addition formula allows us to determine the LDU decomposition of a Hankel matrix of the polynomial sequence defined by weighted partial Motzkin paths. As a direct consequence, we get the determinant of the Hankel matrix of certain combinatorial sequences. In addition, we obtain an addition formula for weighted large Schröder paths.
منابع مشابه
Tiling Proofs of Some Formulas for the Pell Numbers of Odd Index
We provide tiling proofs of several algebraic formulas for the Pell numbers of odd index, all of which involve alternating sums of binomial coefficients, as well as consider polynomial generalizations of these formulas. In addition, we provide a combinatorial interpretation for a Diophantine equation satisfied by the Pell numbers of odd index.
متن کاملCombinatorial proofs of some formulas for triangular tilings
We provide requested combinatorial proofs of some formulas involving numbers which enumerate the tilings of a 2 × n triangular strip with triangles.
متن کاملCombinatorial Proofs of Some Identities for the Fibonacci and Lucas Numbers
We study the previously introduced bracketed tiling construction and obtain direct proofs of some identities for the Fibonacci and Lucas numbers. By adding a new type of tile we call a superdomino to this construction, we obtain combinatorial proofs of some formulas for the Fibonacci and Lucas polynomials, which we were unable to find in the literature. Special cases of these formulas occur in ...
متن کاملOn Han's Hook Length Formulas for Trees
Recently, Han obtained two hook length formulas for binary trees and asked for combinatorial proofs. One of Han’s formulas has been generalized to k-ary trees by Yang. Sagan has found a probabilistic proof of Yang’s extension. We give combinatorial proofs of Yang’s formula for k-ary trees and the other formula of Han for binary trees. Our bijections are based on the structure of k-ary trees ass...
متن کاملColorful Proofs of the Generating Formulas for Signed and Unsigned Stirling Numbers of the First Kind
We describe proofs of the standard generating formulas for unsigned and signed Stirling numbers of the first kind that follow from a natural combinatorial interpretation based on cycle-colored permutations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 23 شماره
صفحات -
تاریخ انتشار 2016